# 睡眠時の呼吸データの時間周波数解析

白水 重憲1,近藤 英明2,片山 宗哲1)

要旨 睡眠ポリグラフ検査結果の中の RR 間隔変動 (ECG). 鼻腔気流 (Naf), 胸部 (RC)・腹部 (Abd) 呼吸データを時間周波数解析し,呼吸周波数 (RFRE) とその変動幅 (VRFRE)を求め,その睡眠の深さとの関係を把握した。

RFRE\_Naf, RFRE\_RC, RFRE\_Abd はほぼ同じ値であり、これらが 0.2 Hz 以上の場合 は、RFRE\_ECG との相違は 0.01 Hz 以下であった。RFRE\_Naf, RFRE\_RC, RFRE\_Abd が 0.2 Hz 以下になると相違は若干大きくなったが最大でも 0.04 Hz であった。RFRE\_ECG は、RFRE\_Naf, RFRE\_RC, RFRE\_Abd の良い推定値である事が示された。なお、RFRE には、睡眠の深さと一般的な関係は無かった。

VRFRE は NREM 睡眠で小さく, REM 睡眠では NREM 睡眠領域に比較すると大きかった。

キーワード:呼吸周波数,呼吸周波数変動幅,NREM 睡眠,RR 間隔変動, ポリグラフ

# 1. はじめに

我々は、ポリグラフと超小型軽量の心電・加速度・ 還度測定装置(M-BIT)<sup>1)</sup>による同時測定を行い、 Rechtschaffen & Kales による国際睡眠判定基準<sup>2)</sup>に よる判定結果と微小体動による睡眠・覚醒判定結果を 対比し、副交感神経活動(PSNS)・交感神経活動の 指標(SNS)、呼吸周波数(RFRE)とその変動幅 (VRFRE)、及び平均心拍数(HR)の睡眠の深さによ る変化を求めた。この中で、VRFRE は睡眠の深さと 共に変化し、浅睡眠と深睡眠で小さく、覚醒と REM 睡眠で大きく、その変化は顕著であり、この変化に基 づく NREM 睡眠領域の推定の可能性が示唆された<sup>30</sup>。

我々は引き続き、ポリグラフと M-BIT による同時 測定を行い、VRFRE が NREM 睡眠時に減少する事を 利用した NREM 睡眠領域検出(VRFRE)法を提唱 し、ポリグラフ睡眠段階との一致率が最大になる閾値 を探した。閾値 0.053Hz で,一致率 0.792,感度 0.872, 特異値 0.46 9であった。VRFRE による NREM 睡眠領域 の推定法の確立は,微小体動法の問題点の補完のみな らず,微小体動法との併用により,REM 睡眠の領域 の推定の可能性も期待できた<sup>50</sup>。

本報では、睡眠ポリグラフ検査の測定結果の中の電 データ(ECG)、鼻腔のエアーフロー(Naf)と、胸部 (RC)ならびに腹部(Abd)の呼吸運動を解析して、 これら4種類のデータから求めた睡眠時のRFREと VRFREの挙動を比較した。

#### 2. 測定と解析

# 2-1 被験者

被験者は医学部学生の自主研究のために polysomnography を行った男性 10 人で,平均年齢は 21.6±3.2 歳(表 1),習慣性飲酒者,喫煙者および内科的・精 神科的疾患を有する者は除外した。自覚的な睡眠状態 は Pittsburgh Sleep Quality Index (PSQI)を用いて評 価した。PSQIのglobal scoreの平均は 3.5±1.5(1 人が 6 で9 人が 5 以下)で日本人健常者とほぼ同じ結果で

NPO法人セルフケア総合研究所
済生会長崎病院 睡眠医療センター 受付日:2013年10月20日
採択日:2013年10月31日

表1 被験者 年齡(才) 性別 被赎者 23 M I 19 2 Μ 3 19 М 4 21 М 5 21 М 21 М 6 7 18 М 21 М 8 9 23 Μ 10 30 М

あった。Polysomnographyでは睡眠呼吸障害や周期性 下肢運動は認めず,睡眠効率は 93.7±3.7%であった。

# 2-2 Polysomnography

脳波電極は睡眠覚醒段階を判定するためのF3-M2. F4-M1, C3-M2, C4-M1, O1-M2, O2-M1 の単極誘導 での記録を行った。電気眼球図,両側側頭筋筋電図, 両側咬筋筋電図オトガイ筋筋電図,心電図,前脛骨筋 筋電図のための電極に加えて、サーモカップル法セン サーで Naf データを, respiratory inductance plethysmography で胸腹部の呼吸運動(RC, Abd)を記録し た。ECG 測定の誘導はI誘導或いはⅡ誘導であった。 また,体位センサー,いびきセンサー,パルスオキシ メーターを装着した。デジタル脳波計は Neurofax EEG-1200<sup>®</sup>(日本光電), および Polymate AP1532<sup>®</sup> (デジテックス研究所)を使用し、ECGのサンプリン グ周波数は500 Hz 或いは1000 Hz とし、Naf 及び RC, Abd 呼吸運動データのサンプリング周波数は 100 Hz とした。それ以外の、各チャンネルのサンプリング周 波数は500 Hz とした。

睡眠段階の解析には NightOwl Professional<sup>®</sup>(のる ぷろライトシステムズ)を用いて 30 sec を 1 エポック として 2007 年 American Academy of Sleep Medicine の スコアリングルール<sup>31</sup> にもとづき視察判定を行った。

2-3 RR 間隔の抽出

世界中で広範に使用されている頑健なリアルタイム QRS ピーク抽出アルゴリズムをベースにした方法 で、心電図波形上でR波の時間位置を求めた<sup>1)</sup>。T波 とR波の鋭さの違いに着目する事で、T波が非常に大 きい幼児の場合でも、正確にR波のピークの時間位置 が検出できるようにアルゴリズムに改良を施した<sup>1)</sup>。 RR 間隔データの分布挙動に着目する事により真のRR 間隔データとアーティファクトを分別し、また、全解 析範囲の RR 間隔データと心電波形を同時に目視判定 し、アーティファクトは全て棄却したい。

# 2-4 RR 間隔からの呼吸周波数 RFRE 及び呼吸周 波数変動幅 VRFRE の推定

RR間隔信号を周波数4Hzでリサンプリングして等 間隔時系列とし,睡眠・覚醒判定と同様に1分間を解 析時間単位として、1分間毎にSPWV(Smoothed Pseudo Wigner-Ville)法を使用して時間周波数解析を 行い,時間周波数MAPを得た<sup>1)</sup>。時間周波数解析で は,時間分解能と周波数分解能の両方を大きくする事 はできない為,本研究では周波数の挙動が重要である ので周波数分解能を大きくなるように調節した。

高周波成分の下限の0.15Hz以上の周波数のRR間隔 変動は呼吸性洞性不整脈である事を基にした Jasson 等の方式<sup>6)</sup>を拡張して、0.15 Hz から平均心拍数の半 分の周波数<sup>7)</sup>までの範囲の瞬時中心周波数 (CFR)を 求め<sup>8)</sup>,更に、10 秒間毎の平均値を求め呼吸周波数 RFRE\_ECG とした。更に、その1分間の変動を呼吸 周波数変動幅 VRFRE\_ECG とした。

2-5 Naf, RC 及び Abd 呼吸データの解析

呼吸の周波数は安静覚醒時で0.3Hz程度であり睡眠時は更に小さい。我々は、Naf, RC, Abdの各呼吸データを4Hzでリサンプリングしても情報の欠損が無い事を確認し、リサンプリングされたRR間隔変動データと同じ方法で時間周波数MAPを得た。各時点ごとに強度最大の周波数を求め、その10秒間毎の平均値をRFRE\_Naf, RFRE\_RC, RFRE\_Abd、その1分間の変動をVRFRE\_Naf, VRFRE\_RC, VRFRE\_Abd とした。

尚,ポリグラフ測定の結果に基づくステージ判定の 解析エポック長は30秒であるので,1分間毎に求めた 各 RFRE 及び VRFRE は

前半の30秒の値=後半の30秒の値=1分間の値

という方法で30秒エポックのものに変換し、ステージ判定結果と比較した。

2-6 睡眠の深さ毎の値

ポリグラフ検査による判定結果に基づき,浅睡眠 (睡眠ステージN1とN2),深睡眠(ステージN3)及び REM 睡眠を合わせて3つのステージに分類し,4つの 測定法による RFRE と VRFRE の各ステージの平均 値,標準偏差を求めた。 2013.

#### 3. 結果と考察

3-1 NREM 睡眠時の時間周波数 MAP

図 1 から 4 に, 深睡眠時の RR 間隔変動, Naf, RC, Abd の時間周波数 MAP の例を示した。1 分間ご との時間周波数 MAP であり, 横軸が時間, 縦軸が周 凌数である。左端のマーカーの赤は RR 間隔変動の低 周波領域(0.04 Hz ~ 0.15 Hz), 青は高周波領域(0.15 Hz ~ 0.4 Hz)を示している。図最上部に表示されてい る数字は, 測定開始日の0時0分からの分数であり, 次段の RFRE, VRFRE はこの1分間の値である。

MAP下部に黒色の点の集まりで示されているRR間 冪及び各呼吸データの波形はそれぞれ異なっている が、周波数は安定しており、どの MAP にも呼吸周波



 図1 NREM 睡眠時の RR 間隔変動の1分間の時間周波数 MAP の例(被験者 9,深睡眠)

積軸が時間,縦軸が周波数。左端のマーカーの赤は0.04 Hz ~
0.15 Hz, 青は0.15 Hz~0.4 Hz。最上部数字は,測定開始日の0
時0分からの分の数。次段の RF RE, VRF RE はこの1分間の
(1) 下部に黒色の点の集まりは被解析データ。

| 1594                                                                                                             |            |                                   |  |
|------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------|--|
| RFRE,                                                                                                            | RFRE; 0.21 | 1,0.014                           |  |
|                                                                                                                  |            |                                   |  |
| 10042204                                                                                                         | _RespA.csv |                                   |  |
|                                                                                                                  |            |                                   |  |
|                                                                                                                  |            |                                   |  |
|                                                                                                                  |            |                                   |  |
|                                                                                                                  |            |                                   |  |
| and the second |            | And the Party of Street of Street |  |

図 2 NREM 睡眠時の Naf の 1 分間の時間周波数 MAP の例 (被験者 9, 深睡眠)

横軸が時間,縦軸が周波数。左端のマーカーの赤は0.04 Hz~ 0.15 Hz,青は0.15 Hz~0.4 Hz。最上部数字は,測定開始日の0 時0分からの分の数。次段の RF RE, VRF RE はこの1分間の 値。下部に黒色の点の集まりは被解析データ。 数の位置に水平に帯状のピークが存在していた。これ を反映して VRFRE の値は小さかった。更に,周期性 が明瞭な呼吸データでは,高調波の位置にもピークが 存在した。

3-2 REM 睡眠時の時間周波数 MAP

図5から10にREM 睡眠時の時間周波数 MAPの例 (NafとRRV)を示した。REM 睡眠時には1分間の中 での呼吸周波数の変動が大きく,その変動の挙動とし ては,帯状のピークが屈曲し連続的に変化するもの (図5,6),一定値から一定値へのジャンプ(図7, 8),徐々に低下した後,大きな値にジャンプして戻る (図9,10)等のパターンが存在した。呼吸周波数のこ のような挙動を反映して VRFRE は大きくなった。な

| 1594                      |   |
|---------------------------|---|
| RFRE, VRFRE; 0.211, 0.013 |   |
|                           |   |
| 10042204_RespB.csv        |   |
|                           |   |
|                           |   |
|                           |   |
| A                         | - |
|                           |   |

図 3 NREM 睡眠時の RC 呼吸運動の1分間の時間周波数 MAP の例(被験者 9、深睡眠)

横軸が時間,縦軸が周波数。左端のマーカーの赤は 0.04 Hz~ 0. 15Hz,青は 0. 15Hz~0.4 Hz。最上部数字は,測定開始日の 0 時 0 分からの分の数。次段の RF RE, VRF RE はこの 1 分面の 値。下部に黒色の点の集まりは被解析データ。

| 1594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                 |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|-------|
| RFRE, VRFRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.212, 0.0            | 014             |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                 |       |
| 10042204_RespC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sv                    |                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                 |       |
| Cally City of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second second | A CONTRACTOR OF | 0-1-1 |
| and the second s |                       | All and and a   |       |
| and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                 |       |

図 4 NREM 睡眠時の Abd 呼吸運動の 1 分間の時間周波数 MAP の例(被験者 9、深睡眠)

横軸が時間,縦軸が周波数。左端のマーカーの赤は 0.04 Hz~ 0. 15Hz, 青は 0. 15Hz~0.4 Hz。最上部数字は,測定開始日の 0 時 0 分からの分の数。次段の RF RE, VRF RE はこの 1 分問の 値。下部に黒色の点の集まりは被解析データ。



図 5 REM 睡眠時の Naf の 1 分間の時間周波数 MAP の例(被 験者 9)

横軸が時間,縦軸が周波数。左端のマーカーの赤は 0.04Hz~ 0.15Hz,青は 0.15Hz~0.4 Hz。最上部数字は,測定開始日の 0 時 0 分からの分の数。次段の RFRE, VRFRE はこの 1 分間の 値。下部に黒色の点の集まりは被解析データ。



図 6 図 5 に対応する REM 睡眠時の RR 間隔変動の 1 分間の 時間周波数 MAP(被験者 9)

横軸が時間,縦軸が周波数。左端のマーカーの赤は0.04 Hz~0.15Hz,青は0.15Hz~0.4 Hz。最上部数字は、測定開始日の0時0分からの分の数。次段のRFRE, VRFRE はこの1分間の値。下部に黒色の点の集まりは被解析データ。

| 10-10                     |          |  |
|---------------------------|----------|--|
| RFRE, VRFRE; 0.221<br>REM | , 0. 084 |  |
| 0042204_RespA.csv         |          |  |
|                           |          |  |

図7 REM 睡眠時の Naf の1分間の時間周波数 MAP の例(被 験者 9)

横軸が時間,縦軸が周波数。左端のマーカーの赤は 0.04Hz~ 0.15Hz, 青は 0.15 Hz~0.4 Hz。最上部数字は,測定開始日の 0 時 0 分からの分の数。次段の RFRE, VRFRE はこの 1 分間の 値。下部に黒色の点の集まりは被解析データ。

| 1548                       |
|----------------------------|
| RFRE, VRFRE; 0.229, 0. 043 |
|                            |
| 10042204_ECGLP.csv         |
|                            |
|                            |
|                            |
| m. M. Man                  |

図8 図7に対応する REM 睡眠時の RR 間隔変動の1分間の 時間周波数 MAP(被験者9)

横軸が時間,縦軸が周波数。左端のマーカーの赤は 0.04Hz~0.15Hz, 青は 0.15Hz~0.4 Hz。最上部数字は,測定開始日の 0 時 0 分からの分の数。次段の RFRE, VRFRE はこの 1 分間の 値。下部に黒色の点の集まりは被解析データ。

| 1618                              |
|-----------------------------------|
| RFRE, VRFRE; 0.245, 0. 069<br>REM |
| 10042204_RespA.csv                |
|                                   |

図 9 REM 睡眠時の Naf の 1 分間の時間周波数 MAP の例(被 験者 9)

横軸が時間,縦軸が周波数。左端のマーカーの赤は 0.04Hz~0.15 Hz, 青は 0.15Hz~0.4 Hz。最上部数字は,測定開始日の 0 時 0 分からの分の数。次段の RFRE, VRFRE はこの 1 分間の 値。下部に黒色の点の集まりは被解析データ。

| 1618      |                             |
|-----------|-----------------------------|
| RFRE, V   | RFRE; 0.2 <b>36,</b> 0. 030 |
|           |                             |
| 10042204_ | ECGLP. csv                  |
|           |                             |
|           |                             |
|           |                             |
|           |                             |
| A         | MANWAY                      |

図 10 図 9 に対応する REM 睡眠時の RR 間隔変動の 1 分間の 時間周波数 MAP (被験者 9)

横軸が時間,縦軸が周波数。左端のマーカーの赤は 0.04Hz~ 0.15Hz, 青は 0.15Hz~0.4 Hz。最上部数字は,測定開始日の 0 時 0 分からの分の数。次段の RFRE, VRFRE はこの 1 分間の 値。下部に黒色の点の集まりは被解析データ。

22

 お. REM 睡眠領域に属するすべての1分間で呼吸周 凌安にこのように大きな変動を示す訳ではなかった。
NREM 睡眠時同様に水平のものや屈曲性の小さなも のも存在しVRFREの値は小さかった。また、同様に
NREM 睡眠にも屈曲したものが存在しVRFREが大き い場合もあった。REM 睡眠時には急速眼球運動に伴 1 延美気量が低下することが報告されており<sup>9)</sup>、急 這な美気量変動に伴い呼吸周波数が大きく変動するも のと推察された。

#### 3-3 RFRE の挙動

このような睡眠の深さと呼吸周波数の挙動,更に測 定方法による相違を総括的に把握する為に,表2に各 被験者の睡眠の深さごとの4つの種類のRFREと VRFREの値を,ECG, Naf, RC, Abdの順に示した。 予想された事であるが,RFRE\_Naf,RFRE\_RC, RFRE\_Abdの値は,ほぼ等しかった。これらが呼吸 周波数の実測値であり,総称する場合は実測値と呼 ぶ。完全に等しい値では無い理由は,図2から4に示

|    |     | RFRE  |       |       |       | VRFRE |       |       |       |       |       |       |        |  |
|----|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--|
|    |     | 浅田    | 垂眠    | 深時    | 垂眠    | REM   | 睡眠    | 浅田    | 浅睡眠   |       | 深睡眠   |       | REM 睡眠 |  |
|    |     | mean  | SD     |  |
|    | ECG | 0.199 | 0.014 | 0.196 | 0.018 | 0.208 | 0.014 | 0.025 | 0.015 | 0.019 | 0.014 | 0.031 | 0.015  |  |
|    | Naf | 0.153 | 0.012 | 0.162 | 0.010 | 0.166 | 0.017 | 0.034 | 0.025 | 0.025 | 0.025 | 0.064 | 0.027  |  |
| 1  | RC  | 0.154 | 0.015 | 0.162 | 0.011 | 0.165 | 0.018 | 0.035 | 0.028 | 0.027 | 0.028 | 0.069 | 0.028  |  |
|    | Abd | 0.155 | 0.014 | 0.162 | 0.009 | 0.167 | 0.019 | 0.039 | 0.031 | 0.029 | 0.030 | 0.066 | 0.027  |  |
|    | ECG | 0.240 | 0.016 | 0.252 | 0.023 | 0.237 | 0.019 | 0.030 | 0.018 | 0.025 | 0.014 | 0.033 | 0.014  |  |
| 2  | Naf | 0.239 | 0.017 | 0.250 | 0.020 | 0.232 | 0.021 | 0.026 | 0.020 | 0.028 | 0.036 | 0.037 | 0.018  |  |
| 2  | RC  | 0.238 | 0.017 | 0.251 | 0.019 | 0.231 | 0.021 | 0.029 | 0.027 | 0.025 | 0.022 | 0.043 | 0.026  |  |
| _  | Abd | 0.239 | 0.017 | 0.250 | 0.020 | 0.232 | 0.021 | 0.028 | 0.023 | 0.029 | 0.031 | 0.038 | 0.021  |  |
|    | ECG | 0.234 | 0.013 | 0.244 | 0.010 | 0.244 | 0.025 | 0.028 | 0.016 | 0.023 | 0.011 | 0.040 | 0.018  |  |
| 3  | Naf | 0.232 | 0.018 | 0.249 | 0.011 | 0.240 | 0.025 | 0.042 | 0.036 | 0.023 | 0.018 | 0.054 | 0.041  |  |
| 5  | RC  | 0.237 | 0.017 | 0.249 | 0.011 | 0.245 | 0.026 | 0.033 | 0.029 | 0.023 | 0.020 | 0.051 | 0.041  |  |
| _  | Abd | 0.237 | 0.016 | 0.249 | 0.008 | 0.244 | 0.023 | 0.030 | 0.020 | 0.026 | 0.023 | 0.048 | 0.032  |  |
|    | ECG | 0.245 | 0.011 | 0.259 | 0.008 | 0.257 | 0.020 | 0.028 | 0.016 | 0.022 | 0.012 | 0.040 | 0.018  |  |
| 4  | Naf | 0.249 | 0.015 | 0.263 | 0.010 | 0.263 | 0.023 | 0.029 | 0.023 | 0.022 | 0.015 | 0.052 | 0.032  |  |
|    | RC  | 0.247 | 0.018 | 0.262 | 0.011 | 0.265 | 0.023 | 0.033 | 0.032 | 0.023 | 0.016 | 0.052 | 0.030  |  |
|    | Abd | 0.249 | 0.016 | 0.262 | 0.010 | 0.263 | 0.023 | 0.031 | 0.029 | 0.023 | 0.017 | 0.056 | 0.043  |  |
|    | ECG | 0.227 | 0.010 | 0.227 | 0.006 | 0.242 | 0.018 | 0.025 | 0.014 | 0.016 | 0.007 | 0.036 | 0.018  |  |
| 5  | Naf | 0.218 | 0.013 | 0.222 | 0.007 | 0.242 | 0.029 | 0.028 | 0.024 | 0.017 | 0.018 | 0.045 | 0.029  |  |
| 5  | RC  | 0.218 | 0.015 | 0.223 | 0.007 | 0.242 | 0.029 | 0.032 | 0.031 | 0.019 | 0.017 | 0.050 | 0.032  |  |
| _  | Abd | 0.220 | 0.014 | 0.223 | 0.011 | 0.243 | 0.031 | 0.033 | 0.029 | 0.018 | 0.016 | 0.051 | 0.039  |  |
|    | ECG | 0.227 | 0.011 | 0.233 | 0.010 | 0.232 | 0.012 | 0.026 | 0.013 | 0.024 | 0.013 | 0.033 | 0.015  |  |
| 6  | Naf | 0.236 | 0.017 | 0.247 | 0.013 | 0.270 | 0.026 | 0.035 | 0.028 | 0.026 | 0.027 | 0.060 | 0.030  |  |
| U  | RC  | 0.247 | 0.040 | 0.247 | 0.015 | 0.278 | 0.029 | 0.054 | 0.058 | 0.029 | 0.038 | 0.084 | 0.056  |  |
| _  | Abd | 0.252 | 0.041 | 0.254 | 0.035 | 0.269 | 0.030 | 0.066 | 0.075 | 0.045 | 0.062 | 0.073 | 0.053  |  |
|    | ECG | 0.253 | 0.025 | 0.271 | 0.019 | 0.252 | 0.020 | 0.033 | 0.022 | 0.028 | 0.015 | 0.038 | 0.020  |  |
| 7  | Naf | 0.246 | 0.024 | 0.270 | 0.017 | 0.245 | 0.023 | 0.037 | 0.037 | 0.022 | 0.015 | 0.048 | 0.029  |  |
| ľ  | RC  | 0.243 | 0.025 | 0.270 | 0.017 | 0.245 | 0.028 | 0.039 | 0.041 | 0.020 | 0.012 | 0.056 | 0.044  |  |
| _  | Abd | 0.246 | 0.024 | 0.270 | 0.018 | 0.247 | 0.025 | 0.037 | 0.035 | 0.021 | 0.014 | 0.046 | 0.028  |  |
|    | ECG | 0.214 | 0.015 | 0.220 | 0.016 | 0.229 | 0.015 | 0.031 | 0.018 | 0.029 | 0.014 | 0.038 | 0.017  |  |
| 8  | Naf | 0.194 | 0.020 | 0.199 | 0.011 | 0.208 | 0.020 | 0.048 | 0.042 | 0.030 | 0.024 | 0.070 | 0.035  |  |
|    | RC  | 0.195 | 0.023 | 0.203 | 0.016 | 0.212 | 0.021 | 0.053 | 0.048 | 0.039 | 0.052 | 0.078 | 0.042  |  |
| _  | Abd | 0.200 | 0.024 | 0.198 | 0.009 | 0.220 | 0.025 | 0.057 | 0.049 | 0.032 | 0.039 | 0.077 | 0.040  |  |
|    | ECG | 0.218 | 0.016 | 0.232 | 0.014 | 0.237 | 0.022 | 0.022 | 0.016 | 0.022 | 0.017 | 0.039 | 0.021  |  |
| 9  | Naf | 0.210 | 0.016 | 0.225 | 0.009 | 0.232 | 0.027 | 0.022 | 0.019 | 0.016 | 0.007 | 0.044 | 0.023  |  |
|    | RC  | 0.209 | 0.017 | 0.225 | 0.008 | 0.228 | 0.026 | 0.029 | 0.037 | 0.016 | 0.007 | 0.045 | 0.022  |  |
| _  | Abd | 0.210 | 0.018 | 0.221 | 0.012 | 0.232 | 0.026 | 0.028 | 0.029 | 0.030 | 0.024 | 0.043 | 0.021  |  |
|    | ECG | 0.236 | 0.013 | 0.232 | 0.008 | 0.262 | 0.022 | 0.027 | 0.016 | 0.017 | 0.012 | 0.044 | 0.021  |  |
| 10 | Nat | 0.228 | 0.021 | 0.230 | 0.020 | 0.230 | 0.026 | 0.032 | 0.029 | 0.029 | 0.030 | 0.043 | 0.028  |  |
|    | RC  | 0.225 | 0.026 | 0.229 | 0.021 | 0.228 | 0.032 | 0.041 | 0.052 | 0.032 | 0.036 | 0.054 | 0.055  |  |
|    | Abd | 0.227 | 0.024 | 0.230 | 0.023 | 0.231 | 0.027 | 0.047 | 0.042 | 0.051 | 0.053 | 0.055 | 0.035  |  |

表2 RFRE と VRFRE の測定結果

したようにそれぞれのセンサーの検出対象および検出 のメカニズムが異なる為に時間周波数解析に供する呼 吸データの波形が異なる事,また,それぞれ独立に アーティファクトが混入する事が考えられた。

RFRE\_ECG と実測値の関係は大別して2種類に分けられた。実測値が0.200 Hz 以上になると, RFRE\_ ECG と実測値との値の相違は0.01 Hz 程度以下となった。

一方, RR 間隔変動のうち呼吸起因と考えられるの は,0.15 Hz 以上の成分であり、それ以下の周波数の 成分には、交感神経活動の影響等も出現する。この為 に、RR 間隔変動からの呼吸周波数の算出周波数領域 は0.15 Hz 以上とした。この為に、実測値が0.20 Hz 以 下になるとその影響が出てきた。実測値が0.20 Hz 程 度の場合は大きさの相違は0.02 Hz 程度になり(被験 者5),0.17 Hz 以下になると0.04 Hz 程度となった(被 験者 1)。しかしながら、この場合でも RFRE\_ECG は 簡便に測定できる呼吸周波数の推測値として十分役に 立つものと考えられた。

なお,実測値の値は0.155 Hz から0.278 Hz まで分布 したが,睡眠の深さとの関係は,個人差が大きく,一 般的な依存性は無かった。

# 3-4 VRFRE の挙動と NREM 睡眠領域の推定

図1から10に示したNREM 睡眠時とREM 睡眠時 の呼吸周波数の挙動の相違はVRFRE に顕著に現われ た。4つの種類のVRFRE の値はいずれも,浅睡眠と 深睡眠では0.060 Hz以下と小さく,REM 睡眠では大 きかった。これらの図と表に示された結果は,我々が これまでVRFRE\_ECG で発見し報告して来た睡眠時 特にNREM 睡眠時のVRFRE\_ECGの低下は,実際の 呼吸挙動を反映したものである事を示し,更に, VRFRE\_ECG の値によるNREM 睡眠領域の探索する 事の根拠を示した。また,微小体動法が睡眠と判定し た領域内のVRFREが大きな領域をREM 睡眠領域と仮 定する事の妥当性も示したものと考えられた。

同じ,被験者・睡眠の深さで比較すると4種類の VRFRE が揃って同様の小さな値を示す事が多かった が,値の間に相違がある場合も存在しVRFRE\_Naf, VRFRE\_RC, VRFRE\_Abd が VRFRE\_ECG の倍近くに なる事もあった。この相違は,Naf,RC,Abdの方 は,1分間ごとに求めた時間周波数 MAP の各時点の ピーク位置を追跡して呼吸周波数を求めているのに対 し,RFRE\_ECG は周波数と強度の積を積分して求め ておりスムージング効果がある為と考えられた。

# 4. 終わりに

4種類の測定法により得られた呼吸データの時間周 波数 MAP を比較し, NREM 睡眠時・REM 睡眠時の呼 吸周波数の挙動を把握した。

RFRE\_Naf, RFRE\_RC, RFRE\_Abd はほぼ同じ値 であり,これらが 0.2 Hz 以上の場合は, RFRE\_ECG との相違は 0.01 Hz 以下であった。RFRE\_Naf, RFRE\_ RC, RFRE\_Abd が 0.2 Hz 以下になると相違は若干大 きくなったが最大でも 0.04 Hz であった。RFRE\_ECG は, RFRE\_Naf, RFRE\_RC, RFRE\_Abd の良い推定 値である事が示された。なお, RFRE には, 睡眠の深 さと一般的な関係は無かった。

VRFRE は NREM 睡眠で小さく, REM 睡眠では NREM 睡眠領域に比較すると大きかった。

#### 参考文献

- 白水重憲,片山宗哲,正木健雄:幼稚園児の自律神経活動の24時間モニタリング.全面発達の展開1:32-41,2011.
- 2) Rechtschaffen A and Kales A: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects: Public Health Service, U. S. Government Printing Office. Washington. D. C. 1968.
- 3) 白水重憲, 成澤 元, 片山宗哲他:国際基準に基づいた睡眠ポリグラフ判定と超小型生体センサー(M-BIT)の測定 データに基づく睡眠解析結果のケース比較. 全面発達の展開2: 8-18, 2012.
- 4) 白水重憲,近藤英明,森 佳織他:呼吸周波数変動幅による NREM 睡眠領域検出。全面発達の展開2: 83-90,2013.
- 5) Iber C, Ancoli-Israel S, Chesson A, Quan S. for the American Academy of Sleep Medicine. 1st ed. Westchester: IL: American Academy of Sleep Medicine; 2007. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications.
- 6) Jasson S, Medigue C, Maison P et al. Instant Power Spectrum Analysis of Heart Rate Variability During Orthostatic Tilt Using a Time-/Frequency-Domain Method: Circulation 96: 3521-3526, 1997.
- 7) Bailón R, Laguna P, Mainardi L et al. Analysis of Heart Rate Variability Using Time-Varying Frequency Bands Based on Respiratory Frequency: Proc. 29th Ann. IEEE EMBS Int. Conf., Lyon, Fr ance 6674–6677, 2007.
- Boashash B. Estimating and interpreting the instantaneous frequency of a signal, I: fundamentals: Proc IEEE. 80: 520 – 538, 1992.
- Nakamura A, Fukuda Y and Kuwaki T: Sleep apnea and effect of chemostimulation on breathing instability in mice: J Appl Physiol. 94: 525–532, 2003.